GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin.

نویسندگان

  • Isabel García-Tornadú
  • Marcelo Rubinstein
  • Bruce D Gaylinn
  • David Hill
  • Edith Arany
  • Malcolm J Low
  • Graciela Díaz-Torga
  • Damasia Becu-Villalobos
چکیده

Recently, the importance of the dopaminergic D2 receptor (D2R) subtype in normal body growth and neonatal GH secretion has been highlighted. Disruption of D2R alters the GHRH-GH-IGF-I axis and impairs body growth in adult male mice. The D2R knockout (KO) dwarf mouse has not been well characterized; we therefore sought to determine somatotrope function in the adult pituitary. Using immunohistochemistry and confocal microscopy, we found a significant decrease in the somatotrope population in pituitaries from KO mice (P=0.043), which was paralleled by a decreased GH output from pituitary cells cultured in vitro. In cells from adult mice the response amplitude to GHRH differed between genotypes (lower in KO), but this difference was less dramatic after taking into account the lower basal release and hormone content in the KO cells. Furthermore, there were no significant differences in cAMP generation in response to GHRH between genotypes. By Western blot, GHRH-receptor in pituitary membranes from KO mice was reduced to 46% of the level found in wildtype (WT) mice (P=0.016). Somatostatin induced a concentration-dependent decrease in GH and prolactin (PRL) secretion in both genotypes, and 1x10(-7) M ghrelin released GH in cells from both genotypes (P=0.017) in a proportionate manner to basal levels. These results suggest that KO somatotropes maintain a regulated secretory function. Finally, we tested the direct effect of dopamine on GH and PRL secretion in cells from both genotypes at 20 days and 6 months of life. As expected, we found that dopamine could reduce PRL levels at both ages in WT mice but not in KO mice, but there was no consistent effect of the neurotransmitter on GH release in either genotype at the ages studied. The present study demonstrates that in the adult male D2R KO mouse, there is a reduction in pituitary GH content and secretory activity. Our results point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level either in 1-month-old or adult mice. The similarity of the pituitary defect in the D2R KO mouse to that of GHRH-deficient models suggests a probable mechanism. A loss of dopamine signaling via hypothalamic D2Rs at a critical age causes the reduced release of GHRH from hypophyseotropic neurons leading to inadequate clonal expansion of the somatotrope population. Our data also reveal that somatotrope cell number is much more sensitive to changes in neonatal GHRH input than their capacity to develop properly regulated GH-secretory function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of the D2 Dopamine Receptor Alters GH and IGF-I Secretion and Causes Dwarfism in Male Mice.

We determined the consequences of the loss of D2 receptors (D2R) on the GH-IGF-I axis using mice deficient in functional dopamine D2 receptors by targeted mutagenesis (D2R(-/-)). Body weights were similar at birth, but somatic growth was less in male D2R(-/-) mice from 1-8 months of age and in D2R(-/-) females during the first 2 months. The rate of skeletal maturation, as indexed by femur lengt...

متن کامل

Joint pituitary-hypothalamic and intrahypothalamic autofeedback construct of pulsatile growth hormone secretion.

Growth hormone (GH) secretion is vividly pulsatile in all mammalian species studied. In a simplified model, self-renewable GH pulsatility can be reproduced by assuming individual, reversible, time-delayed, and threshold-sensitive hypothalamic outflow of GH-releasing hormone (GHRH) and GH release-inhibiting hormone (somatostatin; SRIF). However, this basic concept fails to explicate an array of ...

متن کامل

Regulation of growth hormone secretion from human fetal pituitaries: interactions between growth hormone releasing factor and somatostatin.

Using an explant culture system, we have demonstrated that human somatotropes respond to growth hormone releasing factor (GRF) and somatostatin (SRIF) from as early as 9.5 weeks of fetal age. Responsiveness to GRF increases significantly as a function of age up to midgestation while SRIF inhibition of basal growth hormone (GH) release does not change. SRIF has little effect on GRF-stimulated GH...

متن کامل

Examination of the direct effects of metabolic factors on somatotrope function in a non-human primate model, Papio anubis.

In humans, circulating GH levels are increased in catabolic states and suppressed in obesity. In both extremes, normalization of the metabolic environment normalizes GH release, leading to the conclusion that changes in metabolic hormones and/or metabolites promote changes in GH synthesis and release. Metabolic regulation of GH secretion can be mediated centrally by modulation of hypothalamic G...

متن کامل

Involvement of somatostatin receptor subtypes in membrane ion channel modification by somatostatin in pituitary somatotropes.

1. Growth hormone (GH) secretion from pituitary somatotropes is mainly regulated by two hypothalamic hormones, GH-releasing hormone (GHRH) and somatotrophin releasing inhibitory factor (SRIF). 2. Somatotrophin releasing inhibitory factor inhibits GH secretion via activation of specific membrane receptors, somatostatin receptors (SSTRs) and signalling transduction systems in somatotropes. 3. Fiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 190 3  شماره 

صفحات  -

تاریخ انتشار 2006